Chem. Bcr. 103, 448-462 (1970)

Johannes Christian Jochims und Gisela Taigel

Stereospezifische Fernkopplungen über fünf σ -Bindungen in $H_3C-C-O-C-H$ -Fragmenten

Aus dem Max-Planck-Institut für Medizinische Forschung, Heidelberg

(Eingegangen am 15. April 1969)

cis-2-Methyl-1-oxa-5-oxy-substituierte Cyclopentane zeigen im Gegensatz zu den *trans*-Verbindungen ⁵J-Kopplungen von 0.35 - 0.40 Hz zwischen den Methylprotonen und dem Proton an C-5. Beispiele sind die Isopropylidenzucker 1 - 18, die 1.3-Dioxolane 20 und 21, das Orthoacetat 22 und die Furanosen 23 - 25. Die analogen Sechsringverbindungen 26 - 28 zeigen keine entsprechende ⁵J-Kopplung. Die Kopplung scheint vor allem vom Abstand der Sauerstoff-Funktion an C-5 zur 2-Methylgruppe abzuhängen. Die ⁵J-Kopplung ist positiv. Auch die ⁴J-Kopplung von 0.7 Hz zwischen den geminalen Methylgruppen der Acetonacetale 1 - 18 und 32 ist positiv. Alle Spektren zeigen bei 80° bessere Auflösung als bei 23°. Anwendungen zur Bestimmung der anomeren Konfiguration von Furanosen und zur Konfigurationsanalyse von Zuckern wie 33 und 34 werden besprochen.

Stereospecific Long Range Couplings over Five σ-Bonds in H₃C-C-O-C-H-Fragments

In contrast to the *trans*-compounds, *cis*-2-methyl-1-oxa-5-oxysubstituted cyclopentanes show ${}^{5}J$ -couplings of 0.35-0.40 Hz between the methyl protons and the proton at C-5. Examples are the isopropylidene sugars 1-18, the 1.3-dioxolanes 20 and 21, the orthoacetate 22, and the furanoses 23-25. The analogous six-ring compounds 26-28 do not show a corresponding ${}^{5}J$ -coupling. The coupling seams to depend first of all on the distance between the oxygen function at C-5 and the 2-methyl group. The ${}^{5}J$ -coupling as well as the ${}^{4}J$ -coupling of 0.7 Hz between the gem. methyl groups in the acetone acetals 1-18 and 32 is positive. All spectra show a better resolution at 80° than at 23°. Applications for the determination of the anomeric configuration of furanoses and for the analysis of the structure of sugars such as 33 and 34 are described.

Magnetische Fernkopplungen von Protonen, die durch fünf σ -Bindungen voneinander getrennt sind, sind unseres Wissens zuerst von *Lemieux* und *Stevens*¹ beobachtet und seither von mehreren Autoren beschrieben worden, z. B. l. c.²⁻¹¹, jedoch scheinen solche ⁵J_{H,H}-Kopplungen zur Lösung stereochemischer Fragen bisher kaum verwendet worden zu sein.

- 4) K. Tori und M. Ohtsuru, Chem. Commun. 1966, 886.
- 5) J. Delmau und J. Duplau, Tetrahedron Letters [London] 1966, 559.

¹⁾ R. U. Lemieux und J. D. Stevens, Canad. J. Chem. 43, 2059 (1965).

²⁾ E. J. Boros, K. J. Coskran, R. W. King und J. G. Verkade, J. Amer. chem. Soc. 88, 1140 (1966).

³⁾ K. C. Ramey und J. Messick, Tetrahedron Letters [London] 1965, 4423.

Bei starker Dehnung der Protonenresonanzen der Methylgruppen einer Lösung von 3-O-Acetyl-1.2;5.6-di-O-isopropyliden- α -D-glucofuranose (1) in Benzol-d₆ (siehe Abbild. 1a) erscheinen drei der Methylgruppen als schlecht aufgelöste Quartetts

Abbild. 1. 100-MHz-Protonenresonanz der Isopropyliden-Methylgruppen von 1 in C_6D_6 , stabilisiert auf Benzol mit Tetramethylsilan als innerem Standard bei $\sim 23^{\circ}$ (a) und bei $\sim 80^{\circ}$ (b)

- 7) N. V. Riggs und S. M. Verma, Tetrahedron Letters [London] 1968, 3767.
- ⁸⁾ C. B. Barlow, E. O. Bishop, P. R. Carey und R. D. Guthrie, Carbohydrate Res. 9, 99 (1969).
- 9) K. G. R. Pachler und P. L. Wessels, J. South African chem. Inst. 19, 49 (1966).
- 10) L. D. Hall und J. F. Manville, Carbohydrate Res. 8, 295 (1968).
- ¹¹⁾ N. de Wolf, P. W. Henniger und E. Havinga, Recueil Trav. chim. Pays-Bas 86, 1227 (1967).

⁶⁾ J. C. Jochims, G. Taigel und W. Meyer zu Reckendorf, Tctrahcdron Letters [London] 1967, 3227.

und eine Methylgruppe als breites, nicht aufgelöstes Multiplett. Bei 80° ist die Auflösung ganz erheblich verbessert, wie Abbild. 1b zeigt. Drei Methylgruppen erscheinen nun als recht scharfe Quartetts und für das Signal bei tiefstem Feld wird eine Oktettstruktur erkennbar. Besonders schön spalten die Methylgruppen der 1.2;3.4-Di-O-isopropyliden- β -L-arabinopyranose (2) in Benzol bei 80° auf (Abbild. 2).

Abbild. 2. 100-MHz-Protonenresonanz der Isopropyliden-Methylgruppen von 2 in C_6D_6 , mit Benzol als innerem Standard bei $\sim 80^\circ$

Strahlt man in diesem Spektrum zur Spinentkopplung die Frequenz des Oktetts bei -5.760 ppm^{12} ein, so fällt einmal das Quartett bei -6.038 ppm zu einem Singulett zusammen und gleichzeitig vereinfacht sich das durch zahlreiche Kopplungen komplizierte Signal des anomeren Protons 1-H. Strahlt man andererseits die Frequenz des Signals von 1-H ein, so wird aus dem Oktett bei -5.760 ppm ein Quartett mit 0.70 Hz Linienabstand. Beim Einstrahlen der Frequenz des Quartetts bei -5.697 ppm schließlich fällt das Quartett bei -5.950 ppm zu einem Singulett zusammen. Diese Versuche zeigen, daß die Methylgruppen jedes Isopropylidenrestes mit 0.70 Hz miteinander gekoppelt sind. Eine Methylgruppe der 1.2-Isopropylidengruppe von 2 ist jedoch außerdem mit 0.35 Hz an das anomere Proton 1-H gekoppelt.

Genau das gleiche Verhalten zeigen die Verbindungen 3 bis 12.

Stets findet man bei etwa 80° gut aufgelöste ⁴J-Fernkopplungen von 0.65 – 0.70 Hz der Isopropyliden-Methylgruppen untereinander, und stets koppelt genau eine, und zwar die bei tieferem Feld erscheinende Methylgruppe des 1.2-Isopropylidenrestes mit dem anomeren Proton 1-H mit 0.35 Hz (vgl. Tab.). Nicht 1.2-ständige Isopropylidengruppen (Verbindungen 1-4, 6, 10, 11, 13–18) zeigen also keine auflösbaren ⁵J-Kopplungen, bewirken jedoch Linienverbreiterungen von etwa 0.1 Hz und weniger (Tab.).

¹²⁾ Gerechnet zu hohem Feld von Benzol als innerem Standard.

13

ЭR

16a: R = H **b:** R = COCH₃

Während Kopplungen geminaler Methylgruppen von etwa 0.6 Hz im System $H_3C-C-CH_3$ schon häufig beschrieben worden sind, z.B. l. c.¹³⁻¹⁵, scheint die O^{\prime}O

⁵*J*-Kopplung einer Methylgruppe zu 1-H erst einmal erwähnt worden zu sein. *Pachler* et al.⁹⁾ beschreiben im Molekül **19** nicht aufgelöste Fernkopplungen einer Methylgruppe zu 1-H und 2-H, machen jedoch keine Angabe über Größe, Vorzeichen oder sterische Zuordnung dieser Kopplung.

Im folgenden sollen diese stereospezifischen ${}^{5}J$ -Kopplungen näher charakterisiert werden.

1) Temperaturabhängigkeit der Spektren

Die Verbesserung der Auflösung durch Erwärmen der benzolischen Lösung aller untersuchten Substanzen erfolgt von Verbindung zu Verbindung und für jede Methylgruppe verschieden stark. So ist z. B. in Verbindung 9 die nicht an 1-H ferngekoppelte Methylresonanz bei 1.22 ppm (Tab.) bei 23° breiter als die zusätzlich gekoppelte Methylresonanz bei 1.43 ppm, während bei 85° die Verhältnisse gerade umgekehrt sind. Wegen des Siedepunktes von Benzol sind wir über 85° gewöhnlich nicht hinausgegangen, obwohl die optimale Auflösung bei dieser Temperatur noch nicht erreicht ist. Ein charakteristisches Bild der Methylgruppen bei 85° zeigt Abbild. 1b, ein optimales Bild Abbild. 2. In Dimethylsulfoxid, rein oder in Gemischen mit CDCl₃ oder Benzol, ist die Auflösung bei 80° merklich schlechter als in reinem Benzol, ebenso in konzentrierten Lösungen und in nicht entgasten Proben.

Die Ursache der Temperaturabhängigkeit der Spektren ist uns nicht klar. Pseudorotation des 1.3-Dioxolanringes¹⁶ erscheint unwahrscheinlich, da sich z. B. die Kopplung ${}^{3}J_{1,2} =$ 3.7 Hz in 1 zwischen 23 und 80° nicht meßbar ändert. Abkühlung einer Lösung von 2 oder 20 in Aceton-d₆ oder Methanol-d₄ bis auf -60° bewirkt nur eine zunehmende Verschlechterung der Auflösung. Wir glauben daher nicht an ein sich schnell einstellendes Gleichgewicht zweier Konformationen. Auch behinderte Rotation der geminalen Methylgruppen ist unwahrscheinlich, da Verbindung 20 mit nur einer Methylgruppe die gleiche Temperaturabhängigkeit zeigt. Die Auflösungsverbesserung mit wachsender Temperatur kann jedoch ein Relaxations-effekt sein (abnchmende Viskosität mit wachsender Temperatur!).

2) Konfiguration der ${}^{5}J$ -gekoppelten Methylgruppe

Bei der mit 0.35 Hz an das anomere Proton gekoppelten Methylgruppe der Verbindungen 1-12 und 18 handelt es sich um die *endo*-ständige, *trans* zum anomeren Proton 1-H stehende Methylgruppe des 1.2-Isopropylidenrestes. Diese Zuordnung läßt sich mit dem Kern-Overhauser-Effekt (N.O.E.)^{17,18} beweisen. Strahlt man z.B. bei Verbindung 2 die Signalfrequenz der Methylgruppe bei 1.10 ppm (Tabelle)

¹⁷⁾ R. Kaiser, J. chem. Physics 42, 1838 (1965).

¹³⁾ C. Pascual und W. Simon, Helv. chim. Acta 50, 94 (1967).

¹⁴⁾ W. J. Mijs, Recueil Trav. chim. Pays-Bas 86, 220 (1967).

¹⁵⁾ L. Schuster und P. Schuster, Tetrahedron [London] 25, 199 (1969).

¹⁶⁾ J. R. Durig und D. W. Wertz, J. chem. Physics 49, 675 (1968).

¹⁸⁾ F. A. L. Anet und A. J. R. Bourn, J. Amer. chem. Soc. 87, 5250 (1965).

ein, also der Methylgruppe des 1.2-Isopropylidenrestes, die nicht mit 1-H koppelt, so nimmt das Integral für das Signal von 2-H relativ zu den Integralen von 1-H, 3-H und 4-H um 15 \pm 5% zu. Diese Methylgruppe muß also einen geringen räumlichen Abstand von 2-H haben. Einstrahlen des Signals der mit 1-H koppelnden Methylgruppe bei 1.40 ppm ändert die Integrale der Signale 1-H, 2-H, 3-H und 4-H innerhalb der Fehlergrenze nicht. Nach Betrachtungen am Modell unter Berücksichtigung der schon bekannten¹⁹ Konformation des Pyranoseringes von 2 kommt nur die exo-Methylgruppe in die Nähe von 2-H. Die mit 1-H koppelnde Methylgruppe muß also endo stehen. Ganz analog wird bei Einstrahlen der Methylfrequenz bei 1.20 ppm (Tab.) das Signal von 3-H relativ zu den Signalen 1-H, 2-H und 4-H um $10 \pm 5\%$ intensiver, während Einstrahlen der Signalfrequenz der zugehörigen Methylgruppe bei 1.50 ppm keinen gesicherten Effekt auf die Intensität der Ringprotonen hat. Die Methylgruppe bei 1.50 ppm steht also endo und die Methylgruppe bei 1.20 ppm exo am 3.4-O-Isopropylidenrest. Verbindung 2 hat demnach eine Schrägboot-Konformation (2a) (skew conformation)¹⁹⁾ mit vom Pyranosering abgewendeten endo-Methylgruppen.

Entsprechende N.O.E.-Effekte zeigen die exo-Methylgruppen von 5 auf 2-H und exo-Methylgruppen der 5.6-Isopropylidenreste von 4 und 6 auf 5-H. Kein N.O.E.-Effekt konnte dagegen beim Einstrahlen der Signalfrequenz der C-Methylgruppen der Verbindungen 20 und 21 beobachtet werden.

Bei den Verbindungen 2, 4, 5 und 6 erscheinen die Resonanzen der *endo*-Methylgruppen stets bei tieferem Feld als die der *exo*-Methylgruppen. Auch die Signale der *endo*-Methylgruppen der nicht 1.2-ständigen Isopropylidenreste zeigen infolge geringer, nicht aufgelöster ${}^{5}J$ -Kopplungen deutlich breitere Linien als die der *exo*-Methylgruppen (siehe unten). Die in der Tabelle angegebenen Zuordnungen der Methylgruppen der übrigen Verbindungen beruhen auf der Annahme analoger relativer chemischer Verschiebungen und Linienbreiten.

Bei den stereoisomeren 1.3-Dioxolanen 20 und 21 erscheint in Übereinstimmung mit anderen Arbeiten $^{20, 21, 22)}$ das Proton 2-H der *cis*-Verbindung (20) bei höherem Feld als das der *trans*-Verbindung (21).

- 20) N. Baggett, J. M. Duxbury, A. B. Foster und J. M. Webber, J. chem. Soc. [London] C 1966, 208.
- 21) D. Gagnaire und J. B. Robert, Bull. Soc. chim. France 1965, 3646.
- ²²⁾ P. A. J. Gorin und T. Ishikawa, Canad. J. Chem. 44, 1787 (1966).

¹⁹⁾ C. Cone und L. Hough, Carbohydrate Res. 1, 1 (1965).

Lage (ppm, Tetramethylsilan innerer Standard) und Kopplungen (Hz) der C-Methylgruppen der Verbindungen 1-18, 20-28 und 34

1	3-O-Acetyl-1.2;5.6-di-O-isopropyliden- α -D-glucofuranose a)				
	1.2 endo : 1.37 \bigcirc 1.2 exo : 1.2 endo : 1.37 \bigcirc 1-H : 5.6 endo ⁽¹⁾ : 1.34 \bigcirc 5.6 exo : 5.6 endo : 1.34 \bigcirc 5.6 exo :	$ \begin{array}{c} 1.08 = 0.70 \\ 5.71 = 0.35 \\ 1.23 = 0.68 \\ \sim 4.2 \approx 0.1 \end{array} \right\} \begin{array}{c} b) \\ 85^{\circ} \end{array} $			
2	1.2;3.4-Di-O-isopropyliden-β-L-arabinopyrano 1.2 endo : 1.40 ∨ 1.2 exo : 1.2 endo : 1.40 ∨ 1H : 1.2 exo : 1.10 ∨ 2H :	$ \left. \begin{array}{c} 1.10 - 0.70 \\ 5.22 = 0.35 \\ 4.18 \sim 0.1 \end{array} \right\} 80^{\circ} $			
	3.4 endo : $1.50 \cup 3.4 exo$: 3.4 endo : $1.50 \cup 4$ -H :	$\begin{array}{c} 1.20 = 0.68 \\ 3.88 \sim 0.1 \end{array} \right]$			
3	1.2;5.6-Di-O-isopropyliden-α-D-allofuranose Φ 1.2 endo : 1.55 ∨ 1.2 exo 1.2 endo : 1.55 ∨ 1-H 5.6 endo ⁽¹⁾ : 1.49 ∨ 5.6 exo	$ \begin{array}{c} 1.26 \sim 0.7 \\ 5.68 \sim 0.35 \\ 1.36 = 0.70 \end{array} \right\} 75^{\circ} $			
4	1.2;5,6-Di-O-isopropyliden-α-υ-gulofuranose ^a 1.2 endo : 1.46 ∪ 1.2 exo : 1.2 endo : 1.46 ∪ 1.+H : 5.6 endo : 1.48 ∪ 5.6 exo :	$ \begin{array}{c} 1.20 = 0.69 \\ 5.36 = 0.35 \\ 1.34 = 0.65 \end{array} \right\} 85^{\circ} $			
5	5.6-Anhydro-1.2-O-isopropyliden-α-D-glucofur 1.2 endo : 1.41 \circ 1.2 exo : 1.2 endo : 1.41 \circ 1.41 \ci	$\begin{array}{c} \text{ranose } ^{\text{c})} \\ 1.22 = 0.65 \\ 6.03 = 0.35 \end{array} \right\} 85^{\circ}$			
6	3-Desoxy-1.2;5.6-di-O-isopropyliden-Δ ³ -α-D-gi 1.2 endo : 1.49 ∪ 1.2 exo : 1.2 endo : 1.49 ∪ 1H : 5.6 endo : 1.42 ∪ 5.6 exo : 5.6 endo : 1.42 ∪ 5-H :	$ \left. \begin{array}{c} \text{lucofuranose} \ a^{3} \\ 1.38 = 0.70 \\ 5.78 = 0.3 - 0.4 \\ 1.27 = 0.68 \\ 4.38 \sim 0.1 \end{array} \right\} 80^{\circ} $			
7	1.2-O-Isopropyliden-α-D-glucofuranurono-γ-la 1.2 endo : 1,41 ∪ 1.2 exo : 1.2 endo : 1,41 ∪ 1.2 H :	$\begin{array}{c} \text{cton } e^{\text{b}} \\ 1.20 = 0.70 \\ 5.92 = 0.3 - 0.4 \end{array} \right\} 85^{\circ}$			
8	3.6-Anhydro-1.2-O-isopropyliden- α -D-glucofur 1.2 endo : 1.39 \cup 1.2 exo : 1.2 endo : 1.39 \cup 1.4 H	$\begin{array}{c} \text{(anose a)} \\ 1.16 = 0.70 \\ 5.70 = 0.35 \end{array}$ 85°			
9	6-Benzamino-6-desoxy-1.2-O-isopropyliden- α - 1.2 endo : 1.43 \cup 1.2 exo : 1.2 endo : 1.43 \cup 1.4	$\begin{array}{c} 5.10 = 0.55 \text{ y}\\ \text{D-glucofuranose}^{\text{e}}\\ 1.22 = 0.7\\ 6.08 = 0.3 - 0.4 \end{array} \right\} 85^{\circ}$			
10	3-Desoxy-1.2;5.6-di-O-isopropyliden-&-D-galak	tofuranose ^{a)}			
	1.2 endo : $1.54 \cup 1.2 exo$: 1.2 endo : $1.54 \cup 1.H$: 5.6 endo ⁽¹⁾ : $1.39 \cup 5.6 exo$:	$ \begin{array}{c} 1.20 = 0.7 \\ 5.51 = 0.3 - 0.4 \\ 1.31 = 0.65 \end{array} \right\} 80^{\circ} $			
11	1.2;3.5-Di-O-isopropyliden-α-D-xylofuranose)			
	1.2 endo : 1.43 \bigcirc 1.2 exo 1.2 endo : 1.43 \bigcirc 1-H 3.5 endo ⁽⁴⁾ : 1.37 \bigcirc 3.5 exo	$ \left. \begin{array}{c} 1.11 = 0.7 \\ 5.95 = 0.3 - 0.4 \\ 1.13 = 0.65 \end{array} \right\} 85^{\circ} $			
12	1'.2'-O-Isopropyliden-2-phenyl-β-L-idofurano[1'.2' endo : 1.39 ∪ 1'.2' exo : 1'.2' endo : 1.39 ∪ 1'.H ::	$\begin{array}{c} 6'.5'; 4.5] - \Delta^2 - \text{oxazolin}^{\text{c}} \\ 1.21 \sim 0.6 - 0.7 \\ 6.16 = 0.3 - 0.4 \end{array} \right\} 90^{\circ}$			
13	5'.6'-O-Isopropyliden-2-phenyl- α -D-glucofuran 5'.6' endo ⁽⁴⁾ : 1.33 \cup 5'.6' exo :	$o[2'.1':4.5]-\Delta^2-oxazolin^{e}$ 1.31 = 0.6-0.7 (85°)			
14	5'.6'-O-Isopropyliden-2-phenyl-α-D-allofurano 5'.6' endo ^d) : 1.47 ∪ 5'.6' exo ::	$[2'.1':4.5]-\Delta^2-\text{oxazolin}^{e}$ 1.34 = 0.7 (85°)			
15	1.2;4.5-Di-O-isopropyliden- α -D-fructopyranos $\sim 1.52 \cup$	$1.30 = 0.7$ 1.85°			
16a	 1.52 · (?) 2.3;5.6-Di-O-isopropyliden-α-D-mannofuranos 	1.52 ∫ ³⁵ sea)			
	1.50 U 1.38 U 1.50 U 3-H und/ und 1.38 oder 5-H	$ \left. \begin{array}{c} 1.34 \ = \ 0.6 - 0.7 \\ 1.09 \ = \ 0.6 - 0.7 \\ \sim 4.5 \ = \ \sim 0.1 \end{array} \right\} \ 80^{o} \label{eq:alpha}$			

16b	1-O-Acetyl-2.3;5.6-di-O-isopropyliden-x-D-mannofuranose a)					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
17	2'.3'-O-Isopropyliden-uridin ^{e)}					
	2.3 $endo^{(1)}$: 1.53 \lor 2.3 exo : 1.29 \sim 0.7 2.3 $endo$: 1.53 \lor 3-H : 4.98 \sim 0.1 } 80°					
18	6-O-Acetyl-1.2;3.4-di-O-isopropyliden-a-D-galaktopyranose a)					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
2 0	cis-4-Acetoxy-2-methyl-1.3-dioxolan ^{g)}					
	$\begin{array}{cccc} cis-2 & : 1.34 & \cup \ 4\text{-H} & : & 6.18 & \neg \ +0.40 \ \pm \ 0.02 \\ cis-2 & : 1.34 & \cup \ 5\text{-H} \ cis & : & 5.04 & = & 0.08 \ \pm \ 0.03 \\ cis-2 & : \ 1.34 & \cup \ 5\text{-H} \ trans & : & 3.56 \ \sim & 0 \end{array} \right\} \ 75^\circ$					
21	trans-4-Acetoxy-2-methyl-1.3-dioxolan g)					
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
22	3.4-Di-O-acetyl-1.2-O-[1-methoxy-äthyliden]-β-L-rhamnopyranose a)					
	$ \begin{array}{cccc} 1.2 & endo & : \ 1.78 & \cup \ 1-H & : & 4.95 = 0.35 \\ 6\text{-}CH_3 & : \ 1.13 & \cup \ 1-H & : & 4.95 \sim 0 \end{array} \right\} \ 80^\circ $					
23	1.2.3-Tri-O-acetyl-5-desoxy-β-D-xylofuranose a)					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
24	1.2.3-Tri-O-acetyl-5-desoxy-a-D-xylofuranosc ^a					
	$\begin{array}{rcl} 5\text{-}\mathrm{CH}_3 & : 1.06 \ \cup \ 1\text{-}\mathrm{H} & : & 6.64 \ \sim \ 0.1 \ \text{oder weniger} \\ 5\text{-}\mathrm{CH}_3 & : 1.06 \ \cup \ 3\text{-}\mathrm{H} & : & 5.47 \ \sim \ 0.3 \end{array} \right\} 80^{\circ}$					
25	Methyl-2.3-di-O-acetyl-5-desoxy-x-L-arabinofuranosid a)					
	$\begin{array}{rcrcr} 5\text{-}CH_3 & : 1.34 \ \cup \ 1\text{-}H & : & 5.34 \ \sim \ 0.1 & \text{oder weniger} \\ 5\text{-}CH_3 & : 1.34 \ \cup \ 3\text{-}H & : & 4.87 \ \sim \ 0.1 \end{array} \right\} 80^\circ$					
26	Methyl-2-desoxy-3.4-di-O-methyl-β-L-rhamnopyranosid ^{a)}					
	6-CH ₃ : $1.32 \cup 1$ -H : $4.05 \sim 0$ (80°)					
27	1.2.3.4-Tetra-O-acetyl-β-L-rhamnopyranose ^a					
	6-CH ₃ : 1.20 \lor 1-H : 5.88 \sim 0 (85°)					
28	1 2 3 4-Tetra-O-acetyl-g-L-rhamponyranose ^{a)}					

28	1.2.3.4-Tetra-O-acetyl-α-L-rhamnopyranose a)					
	6-CH3	: 1.20 ∪ 1-H	: 6.25 = 0.1 - 0	.2 (85°)		
34	1.2;3.4-Di-O-äthyliden-6-O-p-toluolsulfonyl-α-D-galaktopyranose ^{a)}					
	a : 1.2 endo	: 1.22 ∪ 1-H	: 5.1-5.4 = ~	0.3 (75°)		
	b: 1.2 endo	: 1.15 : 1.21 ∪ 1-H	: 5.1-5.4 = ~	0.3 (75°)		
	c: 1.2 exo	: 0.95 : 1.07; 3.4 endo	: 1.13			
	a: 1.2 exo	$\sim 1.07; 3.4 exo$:~0.95/			

a) In C₆D₆ mit Benzol als Locksignal und einer Spur Tetramethylsilan als innercm Standard.

^{a)} In C₆D₆ mit Benzoi als Locksignal ting emet open retrainedrytshard as innerem standard.
 ^{b)} Chemische Verschiebungen bei ~23°. Die Kopplungen wurden bei den hinter der Klammer stehenden Temperaturen bestimmt. " ^{but} bedeutet "gekoppelt", " ⁻⁴ bedeutet "Größe der Kopplung". "1.2 endo" bedeutet "endo-Methylgruppe des 1.2-Isopropylidenrestes" usw.
 ^{c)} In C₆D₆/C₆H₆/DMSO-d₆ (3:1:1) + Spur Tetramethylsilan als innerem Standard.
 ^{d)} Turordnung nicht gesichert sondern aus Analogiertinden angenommen.

⁶ In C₆D₆/C₆R₆/Division, (2:1:1) + Dput retrained, and an agenoment.
 ⁶ Zuordnung nicht gesichert, sondern aus Analogiegründen angenommen.
 ⁶ In C₆D₆/C₆H₆/DMSO-d₆ (2:1:1) + Sput TKT als innerem Standard.
 ⁶ In C₆D₆/TMS (4:1). Chemische Verschiebungen bei ~75° abgelesen.

h) Zuordnung nicht gesichert, da Banden weitgehend überdeckt.

3) Weitere ⁵J-Kopplungen

Während nur die endo-Methylgruppen der 1.2-Isopropylidenreste der Verbindungen 1-12 und 18 eine auflösbare ⁵J-Fernkopplung von stets 0.35 Hz zum *trans*-ständigen anomeren Proton 1-H zeigen, findet man weitere nicht aufgelöste ⁵J-Fernkopplungen von etwa 0.1 Hz auch bei anderen Methylgruppen. Strahlt man zur Entkopplung

Chemische Berichte Jahrg. 103

z.B. die Signalfrequenz der *exo*-Methylgruppe des 1.2-Isopropylidenrestes von 2 bei 1.10 ppm ein, so verschärft sich das Signal von 2-H. Merklicher sind die Linien des Quartetts bei 1.50 ppm der *endo*-Methylgruppe des 3.4-Substituenten durch eine nicht aufgelöste Fernkopplung zum 4-H verbreitert. Weitere derartige durch Spinentkopplung gesicherte ⁵J-Fernkopplungen sind in der Tabelle zusammengestellt. Die *endo*-Methylgruppen scheinen in jedem Fall stärker gekoppelt zu sein als die *exo*-Methylgruppen.

4) Strukturelle Voraussetzungen für die ⁵J-Kopplungen

1.2-Isopropyliden-furanosen (1, 3-12) und 1.2-Isopropyliden-pyranosen (2, 18) zeigen gleichgroße ⁵*J*-Kopplungen von 0.35 Hz der *endo*-Methylgruppe zum *trans*-ständigen Proton 1-H.

Im L-Rhamnose-orthoacetat 22 ist eine CH₃-Gruppe durch OCH₃ ersetzt, die nach der Genese^{23, 24)} exo stehen sollte. Übereinstimmend damit ist das NMR-Signal der endo-Methylgruppe (1.78 ppm) in ein Dublett mit 0.35 Hz Linienabstand aufgespalten, welches beim Einstrahlen der Signalfrequenz von 1-H zum Singulett wird.

In den 1.3-Dioxolanen 20 und 21 ist der ankondensierte Zuckerring völlig weggefallen, eine Methylgruppe an C-2 ist durch H ersetzt und der O-Alkylrest an C-4 durch O-Acetyl. Die Methylgruppe an C-2 des *cis*-1.3-Dioxolans (20) zeigt die etwas größer gewordene, auflösbare ${}^{5}J$ -Kopplung von 0.40 Hz zum *trans*-ständigen 4-H, während die Methylsignale der *trans*-Verbindung (21) etwas verbreiterte Singuletts sind (Tab.).

Man kann nun das System noch weiter abändern, indem man den Sauerstoff in 1-Position der 2-methyl-4-oxy-substituierten 1.3-Dioxolane z. B. durch Kohlenstoff ersetzt wie in der 5-Desoxy-xylose 23. Die NMR-Resonanz von 1-H dieser Verbindung bei \sim 23 und \sim 85° zeigt Abbild. 3. In diesem Beispiel ist die 1-H, 2-H-Kopplung sehr temperaturabhängig. Die ⁵J-Kopplung zur CH₃-Gruppe 5 beträgt unverändert 0.35 Hz. Erwartungsgemäß zeigen die anomere Verbindung (24) und das 5-Desoxyarabinofuranosid 25 keine auflösbare Fernkopplung, da hier CH₃-5 und 1-H *cis*ständig sind.

²³⁾ E. Fischer, M. Bergmann und A. Rabe, Ber. dtsch. chem. Ges. 53, 2362 (1920).
 ²⁴⁾ H. S. Isbell und H. L. Frush, J. Res. nat. Bur. Standards 43, 161 (1949).

Abbild. 3. 100-MHz-Signal des anomeren Protons 1-H der Verbindung 23 in Benzol-d₆ bei $\sim 23^{\circ}$ (b) und $\sim 85^{\circ}$ (a)

Ersetzt man jedoch den Sauerstoff in 3-Position des *cis*-2-methyl-4-oxy-substituierten 1.3-Dioxolansystems durch ein C-Atom, so ist eine auflösbare Fernkopplung zwischen 2-CH₃ und 4-H nicht mehr zu beobachten. So koppelt z. B. in Verbindung **25** trotz *trans*-Stellung CH₃-5 nicht sichtbar mit 2-H.

Obligatorisch für die Fernkopplung ist auch die zweifache Sauerstoff-Funktion an C-4 des 1.3-Dioxolansystems. Das zeigen die nicht 1.2-ständigen Isopropylidengruppen der Verbindungen 1-4, 6, 11, 13-18 und besonders klar die Dioxolane 20 und 21, bei denen keine auflösbaren Kopplungen zu den Protonen an C-5 beobachtet wurden.

Bemerkenswerterweise verschwindet die auflösbare ⁵*J*-Kopplung schließlich auch völlig, wenn das Fünfringsystem durch einen Sechsring ersetzt wird. Obwohl z. B. CH₃-6 und 1-H in **22**, **26** und **27** *trans* zueinander stehen und auch sonst alle bisher als essentiell für die ⁵*J*-Kopplung erkannten Merkmale vorhanden sind, können wir keine Kopplung zwischen CH₃-6 und 1-H feststellen.

Verbindung **28** zeigt eine geringe, nicht aufgelöste Kopplung von CH_3 -6 und 1-H (Tab.).

Nach diesen Versuchen ist also für die beschriebene ${}^{5}J$ -Fernkopplung von 0.35 Hz die Anordnung A mit *trans*-ständigem CH₃ und H hinreichend, wobei die mittleren C-Atome und der mittlere Sauerstoff einem Fünfring angehören müssen.

5) Vorzeichen der ${}^{5}J_{H_{3}C-C-O-CH}$ und der ${}^{4}J_{H_{3}C-C-CH_{3}}$ -Kopplung

Vorzeichen von ${}^{5}J_{\rm H,H}$ -Kopplungen in σ -Systemen sind kaum bestimmt worden. Im Adamantanderivat **29** fanden wir⁶) eine positive Kopplung von 3-H und 8-H. *Barlow* et al.⁸) beschrieben eine negative Kopplung von -0.22 Hz zwischen 3-H und dem äquatorialen 6-H der Verbindung **30** und eine positive Kopplung von +0.26 Hz zwischen 2-H und 5-H der Verbindung **31**.

Die hier behandelte ⁵*J*-Kopplung ist positiv, wie durch selektive Spinentkopplung ^{25, 26)} an Verbindung **20** gezeigt werden konnte (Abbild. 4), und zwar relativ zur als positiv angenommenen Kopplung ${}^{3}J_{2,2-\text{CH}_{3}} = +4.94$ Hz oder zur ebenfalls als positiv angenommenen Kopplung ${}^{3}J_{4,5\,cis} = +0.90$ Hz. Die Vorzeichenbestimmung wird möglich, weil 2-H sowohl mit 4-H wie mit 5-H_{cis} geringfügig gekoppelt ist ²⁷⁾.

Abbild. 4. a) 100-MHz-Signal von 4-H der Verbindung 20 bei ~75° in Benzol ohne und b) unter selcktiver Bestrahlung der bei tieferem Feld liegenden großen Linie des Quartetts von 2-H. Darunter das berechnete Spektrum für ${}^{5}J_{2-CH_{3},4} > 0$

Nach der gleichen Technik erweisen sich auch die sehr geringen Kopplungen ${}^{5}J_{2-CH_{3}, 4}$ und ${}^{5}J_{2-CH_{3}, 5trans}$ der Verbindung **21** als positiv (Tab.).

Das Vorzeichen der oft beschriebenen ⁴*J*-Kopplung von etwa 0.7 Hz in Systemen O₁ 20

 $H_{3}C-C-CH_{3}$ scheint bisher nicht bestimmt worden zu sein. Nachdem *Dreeskamp*²⁸⁾ für die entsprechende Kopplung von 0.56 Hz im Aceton ein positives Vorzeichen

²⁵⁾ R. Freeman und D. H. Whiffen, Proc. physic. Soc. B 79, 794 (1962).

²⁶⁾ W. A. Anderson und R. Freeman, J. chem. Physics 37, 85 (1962).

²⁷⁾ Eine vollständige Analyse der Spektren von 20 und 21 wird gesondert veröffentlicht.

²⁸⁾ H. Dreeskamp, Z. physik. Chem., Neue Folge 59, 321 (1968).

fand, war nach experimentell begründeten Überlegungen²⁹⁾ über den Einfluß der Elektronegativität auch in Acetonacetalen die ⁴*J*-Kopplung positiv zu erwarten. Das konnten wir durch heteronukleares "tickling" der Verbindung **32** nach der von *Dreeskamp*²⁸⁾ beschriebenen Methode bestätigen. Relativ zur als positiv angenommenen ³*J*_{13C, 12CH}-Kopplung von +3.4 Hz beträgt ⁴*J*_{12CH, 13CH} = +0.68 Hz.

$$\begin{array}{ccc} H_{3}\ddot{C}-C-\ddot{C}H_{3}\\ O&O\\ H_{3}C&CH_{3} \end{array} 32$$

6) Zum Mechanismus

Die bisher beobachteten ${}^{5}J_{H,H}$ -Kopplungen über 5 σ -Bindungen hinweg lassen sich kaum einheitlich nach einem planaren "extended W"-Mechanismus beschreiben (z. B. l. c. ⁷). Es wurden ${}^{5}J$ -Kopplungen zwischen koaxialen ²) und nicht-koaxialen Protonen (z. B. **29**) beschrieben. Die gekoppelten Protonen können mit den sie verbindenden Atomen koplanar in Form eines verlängerten W⁷), in einer anderen Geometrie²) oder auch nicht-koplanar (z. B. **29**) angeordnet sein. Bei den hier beschriebenen Verbindungen ist nur eine sehr grobe Annäherung an eine ebene verlängerte W-Geometrie zwischen einem Methylproton und dem Acetalproton möglich. Diese Geometrie wäre in **26** und **27** in Übereinstimmung mit der fehlenden Kopplung in diesen Molekülen zwar noch schlechter, in **28** jedoch sehr viel besser verwirklicht. Dennoch zeigt **28** nur eine geringe Fernkopplung.

Nach unseren Ergebnissen hängt die Fernkopplung entscheidend von der Anwesenheit und Orientierung der Sauerstoffatome ab. In den 2-methyl-4-oxy-substituierten 1.3-Dioxolanen ist für die Fernkopplung nur der Sauerstoff 1 entbehrlich. Die 2-Methylgruppe und der Sauerstoff an C-4 müssen *cis* zueinander stehen. In **20** und **21** haben die 2-Methylgruppe und 4-H sehr ähnliche Abstände voneinander²⁷⁾ (etwa 4.3 Å. Diese und die folgenden Abstände wurden an Dreiding-Modellen abgelesen.) Der Abstand der 2-Methylgruppe vom 4-Sauerstoff beträgt jedoch etwa 3.5 Å bei **20** und 4.5 Å bei **21**. Der auffälligste Unterschied beim Übergang von *cis*-substituierten Fünfringen der Art **20** oder **23** zu den entsprechenden Sechsringen wie **26** und **27** ist der erheblich größere Abstand von etwa 4.8 Å zwischen der Methylgruppe (CH₃-6) und der *cis*-ständigen Sauerstoff-Funktion (1-O).

Beträchtliche und mit den hier beschriebenen verwandte Fernkopplungen zeigen 2e-H und 5e-H in 1.3-Dioxanen^{3,5)}.

Für die ⁵J-Kopplung in Fragmenten B

ist also außer der Geometrie der koppelnden Protonen und der sie verbindenden Atome und der Elektronegativität der als unentbehrlich erkannten Sauerstoffatome 3 und 5 vor allem die Orientierung und der Abstand der Methylgruppe 1 und der Sauerstoff-Funktion 5 entscheidend, obwohl O-5 außerhalb des σ -Systems liegt,

²⁹⁾ D. J. Sardella, Chem. Commun. 1968, 1613.

"über das die Kopplung verläuft". Mit abnehmendem Abstand C-1, O-5 nimmt die Kopplung zu. Wir nehmen an, daß die beiden mehr oder weniger parallelen freien Elektronenpaare der Sauerstoffatome 3 und 5 für die Übertragung der Spininformation maßgeblich sind.

7) Anwendungen

Über die ${}^{4}J_{CH_3,CH_3}$ -Kopplungen in den Isopropylidenzuckern (z. B. 1) lassen sich die zur gleichen Isopropylidengruppe gehörenden Methylsignale und über die ${}^{5}J_{CH_3,1}$ -Kopplungen die einzelnen Isopropylidengruppen zuordnen. Die *endo*- und *exo*-Methylgruppe der Isopropylidenreste in 1.2-Stellung des Zuckers können unterschieden werden. So konnte z. B. bei der Strukturaufklärung der Verbindung 33 ein "Singulett" bei 6.06 ppm aufgrund einer Fernkopplung von 0.35 Hz zu einer Isopropyliden-Methylgruppe dem Proton 1'-H zugeordnet werden³⁰).

Die Konfiguration von Orthoacetaten der Art 22 und allgemeiner von 2-methyl-4-oxy-substituierten 1.3-Dioxolanen kann eindeutig festgelegt werden.

Die Beobachtungen an den Zuckern 23-25 eröffnen eine Möglichkeit zur Bestimmung der anomeren Konfiguration von Furanosen, da eine Fernkopplung auch dann noch zu beobachten ist, wenn CH₃-5 durch CH₂OR ersetzt wird. Hierüber soll gesondert berichtet werden.

Zum Abschluß sei die Konfigurationsanalyse der isomeren 1.2;3.4-Di-O-äthyliden-6-O-tosyl- α -D-galaktopyranosen 34³¹ gegeben. Aus D-Galaktose, Acetaldehyd und HCl-Gas erhielten wir nach Tosylierung eine kristallisationsfreudige Substanz vom

*) Zuordnung nicht gesichert, da die Signale von anderen Absorptionen überdeckt sind.

Schmp. $120-121^{\circ}$ und $[\alpha]_{D}^{20}$: -65° (vgl. aber l. c.³¹), die sich dünnschicht- und säulenchromatographisch und beim Umkristallisieren einheitlich verhielt. Das Protonenresonanzspektrum (Tab.) zeigt jedoch das Vorliegen von wenigstens drei, wahrscheinlich allen vier Galaktopyranosen **34**. Abbild. 5 zeigt die Resonanzen der aliphatischen Methylgruppen: Die Hauptsubstanz **a** und die Nebensubstanz **b** zeigen je eine mit etwa 0.3 Hz an 1-H ferngekoppelte Methylgruppe. Verbindungen

³⁰⁾ W. Meyer zu Reckendorf et al., in Vorbereitung.

³¹⁾ J. G. Buchanan und K. J. Miller, Chem. and Ind. 1958, 625.

a und b haben also eine *endo*-ständige Methylgruppe am 1.2-Äthylidenrest. Da weitere Fernkopplungen nicht zu beobachten sind, haben c und d *exo*-ständige 1.2-Äthylidengruppen. Die Methinprotonen in 2-Stellung der 1.3-Dioxolanringe erscheinen als zwei komplexe Signalhaufen bei etwa 4.4-4.7 und 5.0-5.4 ppm.

Abbild. 5. 100-MHz-Spektrum der aliphatischen Methylprotonen von 34 in Benzol-d₆ bei 75°. Zuordnungen gemäß Formeln 34

Da exo-ständige Methinprotonen (*cis* zu den Protonen des Zuckerringes) bei höherem Feld erscheinen als *endo*-Methinprotonen ^{20, 21, 22}, läßt sich die im Spektrum angegebene Zuordnung der übrigen Methylgruppen leicht treffen. Das Mengenverhältnis der vier Verbindungen beträgt etwa $\mathbf{a}: \mathbf{b}: \mathbf{c}: \mathbf{d} = 6:3:3:1$.

Wir danken Herrn Prof. Dr. Th. Wieland für die Förderung dieser Arbeit. Herr Doz. Dr. W. Meyer zu Reckendorf und Frau A. Seeliger überließen uns freundlicherweise die meisten der hier vermessenen Verbindungen.

Beschreibung der Versuche

Alle Spektren wurden bei 100 MHz mit einem HA-100-Spektrometer der Firma Varian aufgenommen. Zur Spinentkopplung dienten zwei Meßsender der Firma Wandel und Goltermann, Reutlingen. Zum ¹³C-tickling-Experiment verwendeten wir die Anordnung HD-60 der Firma NMR-Specialties, New-Kensington, Pa. 15068 USA.

Alle Proben wurden durch wiederholtes Einfrieren und Pumpen entgast und unter Quecksilbervakuum abgeschmolzen.

Die Verbindungen 3-5, 7-9, 12-14 und 33 verdanken wir Herrn Doz. Dr. W. Meyer zu Reckendorf, Institut für Pharmazeutische Chemie der Universität Münster.

Die Verbindungen 1, 2, 11, 15, 16a, 17, 18 und 32 stammen aus Beständen des Instituts und wurden durch Umkristallisation oder Destillation gereinigt.

Die Verbindungen 6^{32} , 10^{32} , ein Gemisch der Verbindungen 20 und 21^{33} , das Orthoacetat 22^{23} und ein Gemisch der Acetate 27 und 28^{23} wurden nach bekannten Methoden hergestellt.

³²⁾ H. Zinner, G. Wulf und R. Heinatz, Chem. Ber. 97, 3536 (1964).

³³⁾ E. Späth und L. Raschik, Mh. Chem. 76, 75 (1946).

Verbindung 16b erhielten wir durch Acetylierung von 16a mit Acetanhydrid in Pyridin nach üblicher Aufarbeitung als farblosen Sirup, der nach dem Protonenresonanzspektrum die reine α -Form darstellt.

Verbindungen 23 und 24 erhielten wir analog aus 5-Desoxy-D-xylose³⁴). Nach Chromatographie an einer Kieselgelsäule mit Benzin (40°)/Äther (7:3) gewannen wir von Verunreinigungen befreite sirupöse Fraktionen, die neben 23 wenig 24 bzw. neben 24 wenig 23 enthielten.

Verbindung 25 entstand als einheitlicher Sirup bei Acetylierung von Methyl-5-desoxy- α -tarabinofuranosid³⁵) mit Acetanhydrid in Pyridin.

Methyl-3.4-di-O-methyl-\beta-L-canarosid (26): *L-Canarose*³⁶⁾ wird nach *Kuhn*³⁷⁾ methyliert. Das dabei entstehende Gemisch der anomeren permethylierten 2-*Desoxy-L-rhamnopyranoside* kristallisiert beim Destillieren (Sdp.₁₂ 88–90°). Aus Pentan kristallisiert die reine β -Form (26) mit Schmp. 36° und $[\alpha]_{D}^{20}$: +70.4° (c = 1.2, CHCl₃).

C₉H₁₈O₄ (190.2) Ber. C 56.82 H 9.54 Gef. C 56.47 H 9.40

1.2;3.4-Di-O-äthyliden-6-O-p-toluolsulfonyl- α -D-galaktopyranose (34): In eine Suspension von 25 g D-Galaktose in 60 g frisch dest. Acetaldehyd wird 5 Min. lang trockenes HCl-Gas eingeleitet. Nach 24stdg. Rühren bei 22° hat sich die Galaktose weitgehend gelöst. Es wird mit Wasser verdünnt, mit NaHCO₃ neutralisiert und 5 mal mit Benzol ausgeschüttelt. Die getrocknete Benzollösung wird i. Vak. eingeengt, der Rückstand in Pyridin aufgenommen und mit p-Toluolsulfochlorid wie üblich tosyliert. Der resultierende Sirup, nach dem NMR-Spektrum ein Gemisch mehrerer Substanzen, wird an einer Kieselgelsäule aufgetrennt. Dabei wird zuerst mit Benzol/Benzin (60–90°) entwickelt, dann mit Benzol und schließlich mit CHCl₃. Wir erhalten so 3.3 g eines kristallinen Produktes, welches nach dem NMR-Spektrum ein Gemisch der reinen Verbindungen 34 ist. Umkristallisation aus Benzol/Benzin oder Äthanol sowie Versuche zur weiteren Auftrennung an Kieselgel (Säule und Dünnschichtplatte) änderten die Zusammensetzung nicht. Schmp. 120–121°, $[\alpha]_D^{20}: -65.0°$ (c = 0.9, CHCl₃) (Lit.³¹): Schmp. 131–132°; $[\alpha]_D^{24}: -71°$ (c = 2, CHCl₃)).

C17H22O8S (387.4) Ber. C 52.70 H 5.98 Gef. C 53.16 H 5.73

[148/69]

³⁴⁾ B. Green und H. Rembold, Chem. Ber. 99, 2162 (1966).

³⁵⁾ H. Zinner, K. Wessely und H. Kristen, Chem. Ber. 92, 1618 (1959).

³⁶⁾ B. Iselin und T. Reichstein, Helv. chim. Acta 27, 1146 (1944).

³⁷⁾ R. Kuhn, H. Trischmann und I. Löw, Angew. Chem. 67, 32 (1955).